
EX5: Un moteur électrique de puissance \mathcal{P}_u = 1500 W et de fréquence de rotation N_m = 3500 tr/min entraîne une vis sans fin 1. Le mouvement de rotation de la vis sans fin 1 est transmis à l'arbre de sortie de la poulie 8 par la chaîne cinématique composée de **3 sous-ensembles A,B** et **C**.

A: Un engrenage roue 2 et vis sans fin 1 ; du rendement $\eta_A = 0.64$

B: Un train d'engrenages droit 3, 4, 5, 6 ; du rendement $\eta_B = 0.87$

C: Un ensemble **poulies-courroie** 7 et 8; du rendement η_C = 0,98

On donne : Le schéma cinématique et les caractéristiques des différents éléments de la chaîne cinématique de transmission de puissance :

sierr de parecaries :			
	1	$Z_1 = 2$ filets	N_2
	2	$Z_2 = 50$ dents	$r_{1-2} = \frac{2}{N_1}$
	3	$Z_3 = 25 \text{ dents}$	
	4	$Z_4 = 60 \text{ dents}$	$r - \frac{N_6}{N_6}$
	5	$Z_5 = 30 \text{ dents}$	$r_{3-6} = \frac{N_6}{N_3}$
	6	$Z_6 = 50 \text{ dents}$	
	7	$d_7 = 35 \text{ mm}$	N_8
	8	d ₈ = 70 mm	$r_{7-8} = \frac{3}{N_7}$

On demande:

- **1- Exprimer** littéralement puis *calculer* le rapport de transmission du sous-ensemble **A**, $r_{1-2} = N_2/N_1$
- 2- Donner le repère des roues menantes et des roues menées du sous-ensemble B
- **3- Exprimer** littéralement puis **calculer** le rapport de transmission du sous-ensemble \mathbf{B} , $\mathbf{r}_{3-6} = \mathbf{N}_6/\mathbf{N}_3$
- **4- Exprimer** littéralement puis *calculer* le rapport de transmission du sous-ensemble C, $r_{7-8} = N_8/N_7$
- **5-** En fonction du nombre de contacts extérieurs du train d'engrenages **B**, *donner* le sens de rotation de 8 par rapport à 3 (inverse ou identique)
- **6- Exprimer** puis *calculer* le rapport de transmission global $r_{1-8} = N_8/N_1$ en fonction de r_{1-2} , r_{3-6} et r_{7-8}

......

- **7- Exprimer** littéralement la vitesse de rotation de l'arbre de sortie N_8 en fonction de $N_1 = N_m$ et r_{1-8} puis *calculer* N_8 en tr/min, en prenant $r_{1-8} = 1/200$
- **8- Exprimer** littéralement la vitesse de rotation angulaire ω_8 en fonction de N_8 puis *calculer* ω_8
- 9- Exprimer littéralement la vitesse linéaire de la courroie V_c en fonction de ω_8 puis calculer V_c
- 10- Exprimer littéralement le couple disponible sur l'arbre 8 C_8 en fonction de la puissane \mathcal{P}_u ; des rendements η_A ; η_B ; η_C et de ω_8 puis calculer C_8