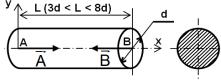


Applications



Doc : élève

COMPRESSION SIMPL

I- HYPOTHÈSES : (Figure 15)

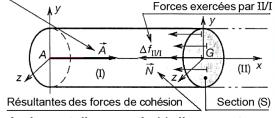
Le solide est idéal : matériau homogène, isotrope, poutre rectiligne et de section constante.

Section circulaire rectangulaire

ENERGIE

de Ød (Figure 15)

Résultantes des forces extérieures « à gauche »


II- <u>DÉFINITION</u>: (Figure 16)

Une poutre sollicitée à la compression si, le torseur associé aux forces de cohésion de II/I au point G, à une résultante perpendiculaire a (S) dirigée vers l'intérieur de la matière, telle que :

$$\left\{coh_{II/I}\right\}_{G} = \begin{Bmatrix} \overrightarrow{N} \\ \overrightarrow{0} \end{Bmatrix}_{G} dans \left(G, \overrightarrow{x}, \overrightarrow{y}, \overrightarrow{z}\right)$$

avec:
$$N < 0$$
; $T_v = 0$; $T_z = 0$

$$\begin{split} \boldsymbol{M}_{t} = 0; \, \boldsymbol{M}_{fGy} = 0; \, \boldsymbol{M}_{fGz} = 0 \\ \text{et } \left\{ coh_{II/I} \right\}_{G} = - \left\{ Action \; \grave{a} \; gauche \, /_{I} \right\}_{G} = - \left\{ \overrightarrow{\stackrel{A}{0}} \right\}_{G} \text{donc} : \overrightarrow{\overrightarrow{N} = -\overrightarrow{A}} \; ; \overrightarrow{M_{G}} = \overrightarrow{0} \end{split}$$

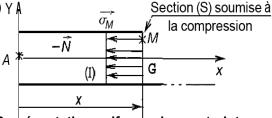
Isolement d'une partie (I) d'une poutre (Figure 16)

III- CONTRAINTES DANS UNE SECTION DROITE: (Figure 17) Y A

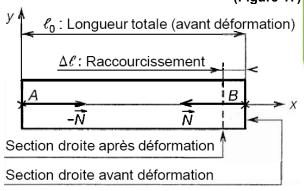
Elles sont normales à (S) et uniformément réparties dans cette dernière. La contrainte σ_M (MPa = N/mm²) a pour valeur :

$$\sigma_{\rm M}$$
 = N/S avec N < 0; $\sigma_{\rm M}$ < 0

N: effort normal (N).


S: section droite soumise à la compression (mm²).

IV- DÉFORMATION D'UNE POUTRE : (Figure 18)


Dans le domaine élastique, les contraintes et les déformations sont proportionnelles.

Le raccourcissement Δl (mm) est :

$$\Delta l = \frac{N \cdot l_0}{E \cdot S_0}$$
 avec **N < 0**; Δl < **0**

Représentation uniforme des contraintes

Déformation d'une poutre

(Figure 18)

V- CONDITION DE RÉSISTANCE :

Pour des raisons de sécurité, la contrainte normale doit rester inférieure à la résistance pratique à la compression Rpc. La condition de résistance est :

$$|\sigma| \le Rpc$$
 ou $\frac{|N|}{S} \le Rpc$ aver

$$Rpc = \frac{\text{Re}\,c}{s}$$

Rec: Résistance élastique à la compression (MPa)

s: coefficient de sécurité.

Remarque : Si le poids de la poutre verticale n'est pas négligeable. la condition de résistance est :

$$\frac{|N|}{S} + \frac{|P|}{S} \le Rpc$$

Poutre verticale	Poids négligé	Poids propre non négligé
Contrainte	$ \sigma = \frac{ N }{S}$	$ \sigma = \frac{ N }{S} + \frac{ P }{S}$
Déformation (si S est constante)	$\left \Delta l \right = \frac{\left N \right \cdot l_0}{E \cdot S}$	$\left \Delta l \right = \frac{ N \cdot l_0}{E \cdot S} + \frac{1}{2} \cdot \frac{ P \cdot l_0}{E \cdot S}$