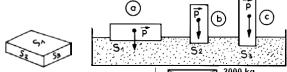


FONCTION ALIMENTER EN ÉNERGIE

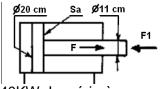
Aspect physique : Mécanique des fluides

Exercíces - Applications

2^{eme} STM Doc : Prof-Élève


Ø80 mm

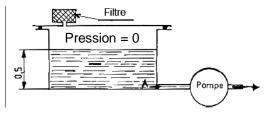
♦ EXERGIGES D'APPLIGATION \$


Pour l'application numérique travailler avec : $\pi = 3.14$

FORCE PRESSANTE - PRESSION

- **Ex1-** La pièce de masse 10 kg repose sur du sable fin et sec avec : $S_1 = 50 \text{ cm}^2$; $S_2 = 15 \text{ cm}^2$; $S_3 = 10 \text{ cm}^2$.
- **1- Calculer** les pressions P₁; P₂; P₃ en Pa, bar, et en daN/cm²?
- 2- Conclure.

- Ex2- Sur la tige d'un vérin on place une masse de 3000 kg, l'alésage du cylindre du vérin est de 80 mm
- 1- Calculer la force pressante exercée sur l'huile ?
- 2- Calculer la surface pressée ?
- 3- Calculer la pression en Pa, en bar ?
- **Ex3-** La section du piston d'une presse étant de 300 cm² ($\emptyset \approx 20$ cm) et la pression étant de 200 bars. **Calculer** la force de cette presse en daN et N ?
- **Ex4-** Une force de 10 tonnes s'exerce sur un vérin de \emptyset 10 cm. **Calculer** la pression en bar.
- Ex5- La pression de travail est de 250 bar. **Quelle** est la force pressante F? Le poids de l'équipage outil + piston + tige est de 2000 daN. **Quelle** est la pression nécessaire pour maintenir cette charge F₁?

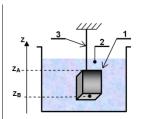

Ex 6- Une pompe hydraulique tourne à 1500 tr/min dans un circuit hydraulique de 40 kW. Le vérin à une surface de 10 cm². La pression de service du circuit est régulée à 300 bars.

Calculer la vitesse de sortie et la force disponible du vérin.

PRESSION DANS UN LIQUIDE AU REPOS

Ex7- Un réservoir pour circuit hydraulique est rempli d'huile à une hauteur de 0,50 m et $g = 10 \text{ m/s}^2$

Quelle est la pression exercée par l'huile sur le fond du réservoir en A, départ vers la pompe ($\rho = 900 \text{ kg/m}^3$).


ÉQUATION DE LA STATIQUE DES FLUIDES : LIQUIDE NON MISCIBLES

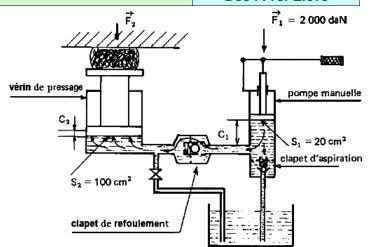
- **Ex8-** Deux vases A_1 et A_2 de sections $S_1 = 50$ cm² et $S_2 = 10$ cm², dont les bases sont dans un même plan horizontal, communiquent par un tube fin de volume négligeable, muni d'un robinet R initialement fermé. On verse un litre de mercure dans A_1 et 0,5 litres de mercure dans A_2 .
- 1- Déterminer les déplacements x_1 et x_2 des deux niveaux de mercure lorsqu'on ouvre le robinet.
- 2- On verse ensuite 1,5 litres d'alcool dans le vase A₁. **Déterminer** à l'équilibre :
 - a- Le déplacement du niveau de mercure dans le vase A2.
 - **b-** La dénivellation entre les deux surfaces libre dans A₁ et A₂.
- 3- Quel volume d'acide sulfurique faut-il maintenant ajouter dans le vase A2 pour que :
 - a- Les deux surfaces libres soient dans un même plan horizontal.
 - b- Les surfaces de mercure soient dans un même plan horizontal.

On donne : $\rho_{\text{mercure}} = 13,60 \text{ g/cm}^3$; $\rho_{\text{alcool}} = 0,79 \text{ g/cm}^3$; $\rho_{\text{acide sulfirique}} = 1,84 \text{ g/cm}^3$.

THÉORÈME D'ARCHIMÈDE

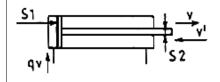
- Ex9- Soit un cube de métal 1 d'arête a et de masse volumique ρ = 7800 kg/m³. Ce cube est suspendu par un fil 3 à l'intérieur d'un récipient contenant un fluide 2 de masse volumique ρ = 820 kg/m³. Soient A et B le centre des faces horizontales du cube ; g = 9,8 m/s²; a = 0,1 m.
- 1- Calculer la tension T du fil 3 (utiliser la relation fondamentale de l'hydrostatique) ?
- 2- Même question en utilisant le théorème d'Archimède?

Exercíces - Applications


@.EZZ@HR@OUI

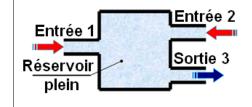
2^{ème} STM

Doc : Prof-Élève


PRINCIPE DE PASCAL

- Ex10- Dans la presse hydraulique ci-contre,
 - a- Calculer la pression sur le petit piston?
 - **b-** Et par le principe de Pascal, **Calculer** la force sur le grand piston.

VITESSE - DÉBIT- ÉQUATION DE CONTINUITÉ


- **Ex11-** De l'huile ayant pour viscosité cinématique $v = 4.10^4 \text{ m}^2/\text{s}$, circule dans une canalisation de Ød = 20 mm **Calculer** le débit volumique maximal de cette huile pour que l'écoulement reste laminaire.
- Ex12- Le piston d'un vérin a une surface de 40 cm². Ce vérin reçoit un débit de 24 ℓ/min. Quelle est :
- 1- La vitesse V de déplacement en sortie de tige.
- 2- La durée de la course si celle-ci fait 20 cm.
- 3- La vitesse V' pour la rentrée de tige, avec un même débit q_v; (S₂=15 cm²)

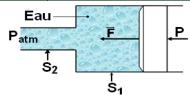
- **Ex13-** La tuyère d'arrivée de l'eau dans une turbine hydraulique, est un tronc de cône de longueur 400 mm et de sections extrêmes entrée du fluide $S_1 = 0.03 \text{ m}^2$; sortie du fluide $S_2 = 0.01 \text{ m}^2$. L'eau entre à la tuyère à la célérité $C_1 = 4 \text{ m/s}$.
- 1- À quelle vitesse l'eau sort-elle de la tuyère ?
- 2- Quel est le débit massique de la tuyère ?
- Ex14- Quelle doit être la section d'une conduite qui doit transporter 0,2 m³ d'eau par seconde à la vitesse de 5 m/s ?
- Ex15- Une conduite transporte 0,25 m³ d'eau par seconde, le diamètre de cette conduite est 200 mm. Quelle est la vitesse d'écoulement de l'eau ?
- **EX16-** Un réservoir plein est alimenté par les canalisations (1) et (2) ; la vidange est assurée par la conduite (3). Il y a continuité du débit entre les (3) canalisations.

Déterminer la célérité d'entrée C2 et les débits ?

Canalisation	Entrée 1	Entrée 2	Sortie 3
Diamètre	100 mm	80 mm	120 mm
Masse volumique	700 kg/m ⁻³	700 kg/m ⁻³	700 kg/m ⁻³
Célérité	5 m/s	?	8 m/s

TRAVAIL ET RENDEMENT

- Ex17- Un moteur de puissance utile 800 W a dépensé 960 W. Calculer son rendement.
- Ex18- Un moteur de 3 cv (rendement 70 %) a fonctionné pendant 10 min, quelle est l'énergie dépensée.
- Ex19- On veut lever une masse de 300 kg de 8 m en 10 s. On utilise une machine de rendement 50 % entraînée par un moteur électrique de rendement 80 %.
 - **Calculer** la puissance utile du moteur en cv. La puissance électrique. Le rendement global de l'installation.
- **Ex20-** On lève une charge de 8000 N de 1 m en 20 s. $\eta_{global} = 0.8$. Calculer l'énergie dépensée.



Exercíces - Applications

DYNAMIQUE DES FLUIDES INCOMPRESSIBLES

EX21- On donne $S_1 = 100 \text{ cm}^2$; $S_2 = 2 \text{ cm}^2$ et $C_2 = 10 \text{ m/s}$. Calculer F?

PUISSANCE D'UN VÉRIN - PUISSANCE D'UNE POMPE

Ex22- Un vérin Double effet a pour section côté piston 40 cm². Il reçoit un débit q_v de 36 ℓ/min. La pression de service est de 80 bars. Calculer :

- 1- La puissance fournie par le vérin
- 2- La puissance nécessaire au récepteur sachant que le rendement global de l'installation est de 60 %.
- Ex23- On doit lever une masse de 3 tonnes à la vitesse de 2 m/min., la pompe fournit une pression de 50 bars. Calculer:
- 1- La puissance de la pompe
- 2- Le diamètre du vérin
- 3- Le débit de la pompe.
- Ex24- Un vérin de force 78500 N doit effectuer une course de 30 cm en 1,5 s. La pression de service est de 100 bars. On demande:
- 1- La puissance du vérin
- 2- Son diamètre
- 3- Le débit nécessaire
- 4- La puissance du moteur électrique d'entraînement de la pompe, le rendement global de cette dernière étant de 80 %.
- Ex25- Soit une conduite lisse rectiligne de diamètre d = 20 mm dans laquelle circule une huile de viscosité cinématique $v = 25.10^{-6}$ m²/s avec un débit de 0,5 ℓ /s.
- 1- Calculer le nombre de Reynolds et indiquer la nature de l'écoulement ?
- 2- Calculer la perte de charge systématique par mètre de longueur de la conduite ?

ÉQUATION DE BERNOULLI

 $C_1 = 5 \text{ m/s}$

Ex26- Dans une conduite simple de section constante on a mesuré les vitesses et les pressions à l'entée et à la sortie. Évaluer les pertes de charge dans la conduite ? $Z_1 = 0 \text{ m}$

 $z_2 = 40 \text{ m}$ $C_2 = 5 \text{ m/s}$

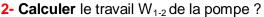
- 1- En hauteur d'eau ∆z ;
- **2-** En unité de pression ΔP .
- $P_1 = 5,4.10^5 Pa$ Ex27- Une pompe à eau est utilisée pour faire passer de l'eau d'un réservoir A d'altitude z₁ = 0 m à un réservoir B d'altitude z₄ = 12 m. À la sortie de la conduite (en 4) on mesure la vitesse de l'eau $C_4 = 4$ m/s ; on donne $P_{atm} = 10^5$ Pa ; section de la conduite S = 0,002 m²
- 1- Quel travail la pompe fournit-elle à chaque kilogramme d'eau qui la traverse ?
- 2- Quel est le débit massique et volumique de la pompe ?
- 3- Quelle est la puissance absorbée par la pompe ?
- Ex28- Soit une conduite rectiligne de diamètre d = 120 mm dans laquelle circule de l'eau de viscosité cinématique $v = 10^{-6}$ m²/s, avec un débit de 20 ℓ /s. La conduite est en acier soudé de cœfficient de perte de charge ε = 0,2 mm ; g = 9,8 m/s² et la rugosité conventionnelle λ = 0,79 $\sqrt{\frac{\varepsilon}{\tau}}$
- 1- Calculer le nombre de Reynolds et indiquer la nature de l'écoulement ?
- 2- Calculer la perte de charge régulière par mètre de longueur de la conduite ?
- **3- Calculer** pour 100 m de conduite la perte de charge ΔP (bar) et Δz (m) ?
- **Ex29-** Une huile de graissage a une viscosité cinématique $v = 16.10^6$ m²/s, de masse volumique $\rho_{\text{hulle}} = 900 \text{ kg/m}^3$. Cette huile par court un circuit de hauteur 3 m et de Ø 10 mm. Elle doit arriver à l'extrémité du circuit avec une célérité de 1 m/s.
- 1- Calculer le nombre de Reynolds et indiquer la nature de l'écoulement ?
- 2- Calculer les pertes de charge régulière dans le conduit ?
- 3- Quelle doit être la pression à l'entrée du circuit (sortie de la pompe à huile) ?

Exercíces - Applications

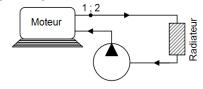
@.EZZ@HR@OU

Doc : Prof-Élève

Ex30- Soit une conduite rectiligne de diamètre d = 8,8 mm dans laquelle circule de l'huile de viscosité cinématique $v = 25.10^6$ m²/s, de masse volumique $\rho_{\text{huile}} = 820$ kg/m³ avec un débit de 15 ℓ /min.


- 1- Calculer le nombre de Reynolds et indiquer la nature de l'écoulement ?
- 2- Calculer la perte de charge régulière par mètre de longueur de la conduite ?
- 3- Calculer la puissance absorbée par les pertes de charge pour 10 m de conduite ?

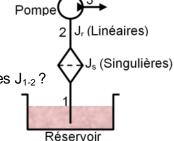
Ex31- Une station d'alimentation d'un château d'eau utilise une pompe de puissance nette $\mathcal{P}_n = 12 \text{ kW}$ capable de débiter 14ℓ /s à une célérité de 4 m/s. La conduite de refoulement provoque une perte charge régulière de 0,12 mètre d'eau par mètre. On donne : $g = 9,8 \text{ m/s}^2$ et on suppose que $P = P_0 = \text{cte}$. La conduite de refoulement est verticale et on pose $L = z_2 - z_1$.


- 1- Calculer le travail échangé W₁₋₂ entre 1 et 2 ? (la pompe est au niveau du canal 1).
- **2- Exprimer** la perte de charge J_{1-2} en fonction de longueur $(z_2 z_1)$ de la conduite de refoulement ?
- **3- Quelle** différence d'altitude $(z_2 z_1)$ peut être atteinte au maximum par cette station ?
- Ex32- Soit à remplir un château d'eau à l'aide d'une pompe située au niveau du sol. On donne : altitude du château d'eau 80 m ; la pression à l'entrée de la pompe est de 10⁵ Pa ; pression à la sortie de la conduite dans le château est de P_{atm} ; section de la conduite de refoulement est de 90 cm² ; puissance de la pompe est de 200 kW ; on mesure la célérité de circulation de l'eau dans la conduite de refoulement est de 15 m/s.
- 1- Quel est le débit volumique de l'installation ?
- 2- Quelle est la perte de charge de l'installation (évaluer en hauteur d'eau) ?

Ex33- Dans un moteur d'automobile, la circulation du liquide de refroidissement se fait en circuit fermé. Le débit de la pompe est $q_v = 1.2 \ \ell/s$. Les pertes de charge de ce circuit sont importantes et on évalue leur somme en différence de pression $\Delta P = 0.4$ bar. On donne $\rho = 10^3$ kg/m³; g = 9.8 m/s².

1- Écrire l'équation de Bernoulli entre 1 et 2, et montrer que le travail W₁₋₂ de la pompe est utilisé uniquement pour vaincre les pertes de charge J₁₋₂?

3- Calculer la puissance nette P_n de la pompe et sa puissance absorbée Pa si on estime son rendement à 0,78%



Ex 34- On donne le schéma d'une conduite d'aspiration d'une pompe à engrenage à un seul sens de flux.

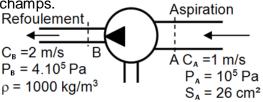
- \checkmark Le débit de cette pompe est $q_v = 1 \ell/s$:
- La longueur de la conduite d'aspiration 1-2 est L = 4 m et son diamètre intérieur est d_{int} = 27,3 mm;
- Le filtre entraîne des pertes de charge singulières de : 5 J/kg ;
- $rac{1}{2}$ La différence de niveau est : $z_2 z_1 = 0.8 \text{ m}$;
- Eles caractéristiques de l'huile pompée est : ρ = 900 kg/m³; υ = 0,45 St (1St = 1 Stockes = 10⁻⁴ m²/s)
- L'accélération de la pesanteur est g = 9,81 m/s².
- **1- Calculer** la vitesse d'écoulement du fluide dans la conduite d'aspiration ?
- 2- Calculer le nombre de Reynolds et en déduire la nature de l'écoulement ?
- **3- Calculer** le coefficient de perte de charge λ , sachant que $\lambda = 64/\Re e$?

4- Calculez les pertes de charge linéaire J_r et en déduire les pertes de charge totales J₁₋₂?

5- Calculez la pression P_2 à l'entrée 2 de la pompe. On donne $J_{1-2} = -18 J/kg$

Ex35- Soit une conduite **horizontale** de diamètre intérieur $d_{int} = 105,6$ mm et de longueur L = 4 km. Le fluide transporté a pour caractéristiques : $\rho = 0,8.10^3$ kg/m³; $\upsilon = 2$ St (1 St = 1 Stockes = 10^{-4} m²/s) et Qv = 1200ℓ /s. Les pertes de charge J_{12} dans la conduite sont de -5,22 kJ/kg

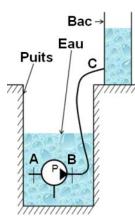
- 1- Calculer la vitesse d'écoulement du fluide dans la conduite ?
- 2- Calculer le nombre de Reynolds et en déduire la nature de l'écoulement ?
- **3- Calculer** le travail W_{1-2} fourni par la pompe, sachant que $P_1 = P_2$?
- **4- Calculer** la puissance \mathcal{P}_{pompe} de la pompe ?


Exercíces - Applications

Doc: Prof-Élève

Calcul d'une pompe

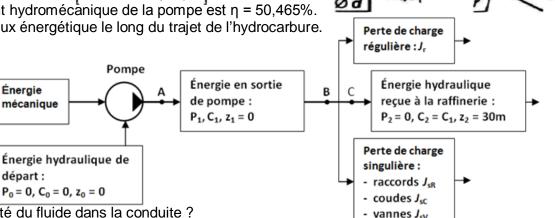
App1- On installe sur un barrage une pompe rotative pour irriguer les champs.


- 1- Calculer la section S₂ de la conduite de refoulement ; sachant que Refoulement le type de pompe employée assure un écoulement permanent ?
- **2- Calculer** le débit volumique de cette pompe ?
- 3- Déterminer le travail échangé entre A et B ; en déduire la puissance de la pompe?

App2- Une pompe à une puissance de 1kW est immergée dans un puits. et assurer un débit de 7,2 m³/h. Supposons qu'en A (entrée de la pompe) et en C (entrée du tube de refoulement dans le bac), l'eau est à la pression atmosphérique P_0 ($P_0 = P_{atm} = 1,013.10^5 P_a \approx 10^5 P_a$).

Le tube de refoulement BC à une section constante égale à 800 mm²

- 1- Calculer le débit massique de la pompe.
- 2- Quelle est la vitesse d'écoulement de l'eau dans le tube BC.
- 3- Quel travail la pompe échange-t-elle avec 1kg d'eau qui la traverse.
- **4- Quelle** est la pression de l'eau à la sortie B de la pompe $(g = 10 \text{ m/s}^2)$.
- 5- Quelle est la différence de niveau entre les 2 extrémités B et C.


ACHEMINEMENT DE L'HYDROCARBURE

App3- Une conduite de diamètre d = 150 mm permet de transférer un produit pétrolier de masse volumique $\rho = 0.9.10^3$ kg/m³ et de viscosité dynamique $\mu = 0.3$ Poiseuille depuis un terminal portuaire (altitude $z_1 = 0$ m) jusqu'à une raffinerie distante de L = 20 km et d'altitude $Z_2 = 30$ m. Le débit doit être Q_v = 30 litre/s. Cet oléoduc est formé de tubes d'acier raccordés tous les cinq mètres. Le coefficient de perte de charge au niveau de chaque raccord est évalué expérimentalement à $\mathcal{E}_R = 10^{-3}$. On rencontre le long de l'installation cinq vannes de sécurité qui, en position ouverte ont un coefficient

de perte de charge $\mathcal{E}_V = 0.1$ et trente coudes à 90° dont le rayon est r = 400 mm, \mathcal{E}_C est déterminé par

la relation suivante : $J = \left| 0.13 + 1.85 \left(\frac{d}{2r} \right)^{3.5} \right| \cdot \frac{\alpha^o}{180} C_1^2$

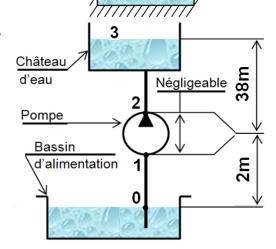
Le rendement hydromécanique de la pompe est $\eta = 50,465\%$. Schéma du flux énergétique le long du trajet de l'hydrocarbure.

- 1- Calculer la célérité du fluide dans la conduite ?
- 2- Déterminer le type de l'écoulement ?
- 3- Évaluer les pertes de charges régulières ?
- 4- Évaluer les pertes de charges singulières ?
- 5- Calculer la pression de pompage avec et sans les pertes de charges ?
- 6- Calculer l'énergie massique de pompage et la puissance mécanique ?
- **7- Comparer** les deux puissances et conclure ?

Exercíces - Applications

Doc: Prof-Élève

App4- Une pompe est installée à la sortie d'un puits et aspire l'eau dans celui-ci, l'eau est rejetée immédiatement à la sortie de la pompe et utilisée pour l'irrigation. La conduite d'aspiration et de refoulement ont le même diamètre d et la hauteur d'eau entre 1 et 2 est $z_2 - z_1 = 5$ m. Le choix de la pompe doit être fait de telle façon que le débit volumique de celle-ci soit $q_v = 4.5 \, \ell$ /s. Dans la conduite, la vitesse de l'eau doit être égale à environ 1,5 m/s valeur définie par l'usage et la pression absolue P2 à l'entrée de la pompe ne doit pas être inférieure à 0,4 bar sous peine de provoquer un phénomène de *cavitation, néfaste à la durée de vie de la pompe. On note J₁₋₂ la perte de charge régulière dans la conduite 1-2 et $J_{2-3} = 0,15$ J/kg la perte de charge singulière (estimée) dans la pompe. On estime également à $\eta = 0.94$ le rendement de cette dernière. Puits Eau


Données et hypothèses :

- ◆ La pression atmosphérique est supposée constante : P₃ = P₁ = P₀ = 1 bar.
- Pour l'eau : $\rho = 10^3 \text{ kg/m}^3 \text{ et } \upsilon = 10^{-6} \text{ m}^2/\text{s}.$
- On suppose que $z_3 = z_2$ et que g = 9.81 m/s².

Questions:

- 1- Calculer le diamètre d des conduites d'aspiration et de refoulement ?
- 2- Calculer le nombre de Reynolds, en déduire la nature de l'écoulement ?
- 3- Calculer la perte de charge régulière J₁₋₂ dans la conduite d'aspiration dont la longueur égale $z_2 - z_1 = 5 \text{ m}$?
- 4- Calculer la pression P₂ à l'entrée de la pompe et vérifier que la condition de non cavitation est respectée ?
- 5- Calculer la puissance nette de la pompe ?
- 6- Calculer la puissance absorbée par celle-ci?
- App5- Une pompe, située 2 m au-dessus d'un bassin d'alimentation, doit élever de l'eau dans un château d'eau dont le niveau est à 40 m. Elle doit débiter 30 l/s grâce à des canalisations de Ød = 100 mm. On estime les pertes de charges à 0,1m par mètre de *dénivelée.
- 1- Calculer la vitesse du fluide dans la canalisation ; et indique la nature de l'écoulement ?
- 2- Calculer la puissance minimale de la pompe ?
- 3- Calculer les pressions à l'entrée et à la sortie de la pompe ? Hypothèses : - $P_{atm} = P_{amb} = 10^5 Pa$ - $g = 9.81 m/s^2$

 - Les niveaux du bassin d'alimentation et du château d'eau restent constants

<code>App6-</code> Une station d'alimentation d'un château d'eau utilise une pompe immergée de puissance ${\mathscr P}$ à déterminer. Cette pompe refoule l'eau dans une conduite verticale de hauteur $L= z_2 - z_1 = 40 \text{ m}$ et de diamètre d = 120 mm. La vitesse d'écoulement dans la conduite est : $C_2 = C_1 = 5$ m/s. les pressions d'eau

(absolues) mesurées avec un manomètre en 0, 1, 2 sont :

 $P_0 = 10^5 \text{ Pa}$ (pression atmosphérique); $P_1 = 5.4.10^5 \text{ Pa}$; $P_2 = 1.2.10^5 \text{ Pa}$.

On donne la viscosité cinématique de l'eau : $v = 10^{-6}$ m²/s.

On néglige les pertes de charge singulières et on donne : $g = 10 \text{ m/s}^2$.

- 1- Calculer, par kilogramme d'eau, la perte de charge linéaire entre les sections extrêmes 1 et 2 de la conduite ? Exprimer cette perte de charge, en hauteur d'eau Δz , et en variation de pression ΔP ?
- 2- Calculer le nombre de Reynolds dans la conduite et en déduire la nature de l'écoulement ?
- **3- Calculer** le coefficient λ de perte de charge linéaire dans la conduite ?
- 4- Calculer le travail échangé entre la pompe et la masse de un kilogramme d'eau qui la traverse ? On néglige les pertes de charge singulières dans la pompe.
- 5- Calculer le débit volumique et le débit massique de la pompe ?
- 6- Le rendement de la pompe est donné par le constructeur : $\eta = 0.85$, calculer la puissance absorbée \mathcal{P}_a ?

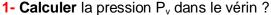
Exercíces - Applications

Doc: Prof-Élève

<mark>App7-</mark> Une pompe de puissance 1 kW est utilisée pour faire passer de l'eau d'un réservoir d'altitude $z_0 = 0$ m à la partie supérieure d'un château d'eau pour lequel $z_1 = 25$ m. La section de la conduite est S = 25cm², la célérité de l'eau à la sortie de la conduite est $C_1 = 1$ m/s.

Données : ρ_{eau} = 1000 kg/m³; $\mathcal{P}_{absorbée}$ = 1053 Watts ; g = 10 m/s².

- 1- Quel est le débit volumique de la pompe ?
- 2- Quelle est la perte de charge totale exprimée en hauteur d'eau ?
- 3- Quel est le rendement de l'installation?


App8- En période de réglage en hauteur de l'élévateur, une pompe alimente un vérin hydraulique 2, (dont la tige sort avec une célérité C = 0.06 m/s)

Données : - Diamètre de la conduite d = 10 mm ;

- action de 1 sur la tige $F_{1/tige} = 3500 \text{ daN}$;
- Puissance fournie par la pompe : P = 2.5 kW
- Masse volumique de l'huile : ρ = 850 kg/m³;
- Pression atmosphérique : $P_0 = P_a = 10^{5} Pa$;
- $-z_2 z_1 = 0.5 \text{ m}$; $z_2 = z_3$; $C_1 = 0 \text{ m/s}$; g = 10 N/kg.
- 1- Calculer la célérité C₃ dans la conduite en (m/s) ?
- 2- En déduire le débit volumique et le débit massique ?
- 3- On suppose que le déplacement du vérin se fait sans frottement, calculer la pression P3 d'alimentation du vérin en (pascal)?
- **4- Calculer** le travail W_{1-2} fourni par la pompe en (J/kg) ?
- 5- On suppose que les pertes de charge J_{2-3} dans la canalisation (2-3) sont nulles. **Déduire** la pression de refoulement de la pompe P₂ en (Pa) ?
- 6- Calculer les pertes de charge J₁₋₂ en (J/kg) ?
- 7- En déduire le rendement de l'installation ?

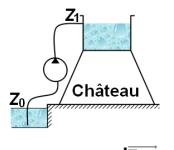
App9- On veut déterminer la puissance du moteur M. Soit le dispositif d'alimentation du vérin (5 + 6) ci-contre : Le vérin (5 + 6) développe une force de 10 daN est caractérisé par : - son diamètre D = 120 mm

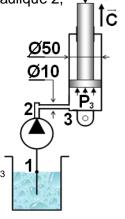
- son rendement $\eta_v = 0.9$.

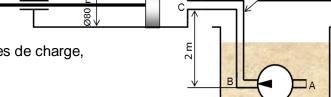
2- La tige du vérin se déplace à une vitesse C = 0,2 m/s ; calculer le débit volumique de la pompe ?

3- La conduite de refoulement de la pompe à une longueur L = 3 m et un diamètre intérieur d_{int} = 21,6 mm ; calculer la célérité C₂₋₃ de l'huile dans la conduite 3-4 ?

- **4-** l'huile à une $v = 0.25.10^{-6}$ m²/s et $\rho = 850$ kg/m³; **déterminer** le type de l'écoulement ?
- **5- Calculer** la pression P_3 si $J_{3-4} = 112$ J/kg?
- **6- Calculer** la pression P_2 si $P_1 = 10^5$ Pa ; $z_2 z_1 = 2$ m ; $J_{1-2} = 0,2$ J/kg et $C_1 = 0$ m/s ?
- **7- Calculer** la puissance de la pompe si $P_3 = 10^6$ N/m² et $J_{2-3} = 0$ J/kg?
- **8- Déterminer** la puissance du moteur M si $\eta_{pompe} = 0.82$?


App10- Le vérin d'un mécanisme d'ablocage est supposé alimenter à l'huile par une pompe débitant dans un réservoir situé à 2 m plus bas. Le fluide sera considéré comme parfait incompressible.


1- La vitesse d'approche du piston est constante et égale à 0,15 m/s, calculer la vitesse d'écoulement du fluide dans la tuyauterie?


- **2- Calculer** le débit volumique de la pompe en ℓ /s ?
- 3- Sachant que la pression en C est $P_c = 5.10^3$ Pa, écrire l'équation de Bernoulli entre B et C?

Et en déduire la pression en B? En néglige les pertes de charge,

on donne g = 10 m/s² et ρ_{huile} = 800 kg/m³

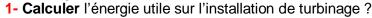
Exercíces - Applications

Doc: Prof-Élève

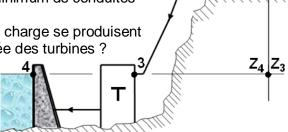
Capteur de pression différentiel

App11- Les prises de pression en 1 (entrée de la pompe) et en 2 (sortie de la pompe) sont des prises de pression absolue. Le rack électronique permet d'intégrer les informations d'un certain nombre de capteurs et par exemple d'afficher P₂ – P₁. Hypothèses et données :

Le fluide pompé est de l'eau, la tubulure d'aspiration a un diamètre d₁ = 150 mm, la tubulure de refoulement a un diamètre d₂ = 100 mm. Le débit volumique de la pompe est $q_v = 15.10^{-3}$ m³/s. Pour cette valeur du débit, le capteur différentiel indique : $P_2 - P_1 = 9.8.10^3$ Pa. Le rendement de la pompe est évalué à $\eta_{\text{pompe}} = 0.7$. On donne $g = 10 \text{ m/s}^2$; $\rho = 10^3 \text{ kg/m}^3 \text{ et } z_2 = z_1$

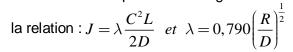


Z(m)↑

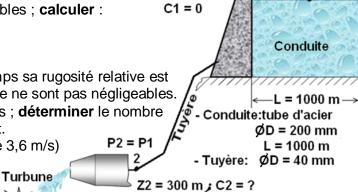

- 1- Calculer la vitesse de l'eau, en 1, en 2 ?
- 2- Dans la pompe, on néglige les pertes de charge singulières ; calculer le travail fourni par la pompe à 1 kg d'eau qui la traverse ?
- 3- Calculer la puissance nette et la puissance absorbée ?
- 4- On évalue maintenant les pertes de charge singulières dans la pompe à 2,74 J/kg; calculer successivement le travail échangé, la puissance absorbée ?

Calcul d'une turbine

App12- On veut prédéterminer une installation hydraulique de 1 GW située entre deux plans d'eau. Les altitudes diffèrent de 420 m. on peut estimer que les pertes de charge correspondent à 1/7 de l'énergie disponible sans pertes. Les trois canalisations auront un diamètre d = 3 m. $(a = 9.81 \text{ m/s}^2)$


- 2- Pour un écoulement laminaire, combien faudrait-il prévoir en minimum de conduites en parallèle?
- 3- En limitant à trois conduites et en considérant que les pertes de charge se produisent essentiellement avant les turbines, calculer la pression à l'entrée des turbines ?

- App13- On considère une installation hydraulique schématisée par le dessin ci-contre, la conduite qui alimente la tuyère à un diamètre D = 200 mm et de longueur L = 1000 m. Le diamètre de la tuyère et de 40 mm. Z1 = 800 m
- 1- On suppose que les pertes de charge sont négligeables ; calculer :

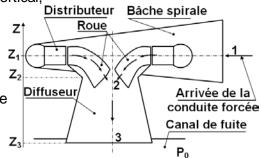

a- La vitesse de l'eau à la sortie de la tuyère ?

- **b-** Le débit volume ? $(g = 10 \text{ m/s}^2)$
- c- La vitesse de l'eau dans la conduite ?
- 2- On réalité cette conduite fonctionne de puis longtemps sa rugosité relative est de R/D avec R= 0,15 mm; donc les pertes de charge ne sont pas négligeables.
 - a- La viscosité cinématique de l'eau est $v = 10^{-6}$ m²/s ; **déterminer** le nombre de Reynolds et indiquer la nature de l'écoulement.
 - (On suppose que la vitesse de l'eau est voisine de 3,6 m/s) b- Pour évaluer les pertes de charge on donne

Calculer la perte de charge?

- c- Calculer la vitesse de l'eau à la sortie de la tuyère en déduire alors q_m?
- d- Quelle est la puissance de la turbine ?

Canal de fuite


Exercíces - Applications

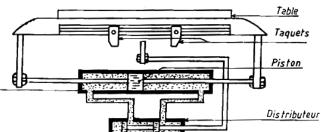
Doc: Prof-Élève

4- La figure ci-contre, représente une turbine hydraulique à axe vertical, utilisée dans les usines de moyenne chute.

Elle est essentiellement constituée par :

- une bâche spirale horizontale à laquelle vient se raccorder (en 1) l'arrivée de la conduite forcée :
- un distributeur muni d'ailettes directrices permettant d'augmenter ou diminuer le débit. Cette opération est asservie à la fréquence de rotation de l'alternateur calé sur l'arbre de la roue à aubes. À la sortie de la roue. l'eau entre en 2 dans le diffuseur et se jette à sa sortie en 3 dans le canal de fuite.

C'est le diffuseur qui l'objet de notre étude. On modélise celui-ci par un tronc de cône de révolution à axe vertical de hauteur h = 4 m. On donne


- À l'entrée 2 : section de la veine fluide $S_2 = 15 \text{ m}^2$, pression absolue P_2 à calculer.
- À la sortie 3 : section de la veine fluide $S_3 = 30 \text{ m}^2$, pression $P_3 = 10^5 \text{ Pa}$ et la vitesse de l'eau $V_3 = 1.8$ m/s.
- 1- Calculer le débit volumique de la turbine, son débit massique et la vitesse de l'eau à l'entrée du diffuseur ?
- 2- Calculer la pression P₂ à l'entrée du diffuseur, la comparer à la pression atmosphérique et interpréter le résultat?
- 3- On veut chiffrer le gain de puissance obtenu par l'emploi du diffuseur. Pour cela on écrira le théorème de Bernoulli pour une turbine avec diffuseur et on exprimera W₁₋₂, le travail échangé entre un kilogramme d'eau et la turbine avec diffuseur entre 1 et 3 ? (Avec $W_{1-2} < 0$; $W_{2-3} = 0$ et on néglige les pertes de charge)
- 4- Écrire le théorème de Bernoulli pour une turbine sans diffuseur c'est-à dire telle que P2 = Patri et exprimer W'1-2, le travail échangé entre un kilogramme d'eau et la turbine sans diffuseur entre 1 et 2 ? (Avec W'₁₋₂ < 0 et on néglige les pertes de charge).
- **5- Calculer** le gain de puissance dû au diffuseur ? Pour cela, calculer : $\Delta \mathcal{P} = (|W_{1-2}| |W_{1-2}|)q_m$

App15- Étude de la commande automatique et manuelle

du mouvement longitudinal de la table d'une rectifieuse. Le schéma ci-dessous montre le circuit hydraulique permettant d'avoir l'automatisation

de ce mouvement sur la rectifieuse.

PS

1- Partie statique :

Le réservoir contenant l'huile a les dimensions suivantes :

Montrer que la différence de pression entre le fond (Pf) et la surface (Ps) est négligeable devant la pression atmosphérique (Pf-Ps ≈ 0) ? Avec : $P_{atm} = 10^5 Pa$

 $\rho_{\text{huile}} = 860 \text{ kg/m}^3 \text{ ; g} = 10 \text{ m/s}^2.$

2- Partie cinématique :

2a- Calculer le nombre de \Re eynolds (\Re e) pour une portion de la conduite ayant pour diamètre d = 20 mm et où l'huile a une célérité C = 5 m/s ? On donne la viscosité cinématique de l'huile : $v = 20.10^{-6}$ m²/s.

Conduite

Reservoir

2b- En déduire si l'écoulement y est laminaire ou turbulent ?

3- Partie dynamique:

Chaque kilogramme d'huile reçoit un travail $W_{1-2} = 400$ J/kg pendant sa traversée entre les points 1 et 2. On donne : $C_1 = 4$ m/s ; $Z_1 = 0$ m ; $P_1 = 10^5$ N/m² et $C_2 = 8$ m/s ; $Z_2 = 1.2$ m ; $P_2 = 4.10^5$ N/m²

- 3a- Écrire l'équation générale de Bernoulli entre 1 et 2 ?
- **3b- En déduire** la valeur des pertes de charges J₁₋₂ entre 1 et 2 ?
- 3c- Calculer la puissance absorbée par la pompe, sachant qu'elle débite 9 litres/min?

Exercíces - Applications

Doc: Prof-Élève

Calcul d'un moteur hydraulique

App16- Un moteur hydraulique reçoit 26 \(\ell / \)min, sous une pression de 100 bars. A cette pression les fuites externes dues aux jeux mécaniques sont, pour ce moteur, de 2 \(\ell /min. \)

La cylindrée est de 80 cm³/tr. **On demande** :

- 1- La fréquence de rotation en tr/min ?
- **2-** La puissance utile du moteur ? On admettra un rendement $\eta = 0.85$.
- 3- Le moment de son couple ?
- 4- Comment peut-on faire varier : 4.a- la fréquence de rotation ?

4.b- le moment du couple ?

- 5- On utilise ce moteur pour monter une masse de 1000 kg. Quelle sera la vitesse d'ascension de la charge?
- App17- Un moteur hydraulique (un seul sens de rotation) doit faire 80 tr/min, avec un couple utile sur l'arbre de 201 N.m.
 - Le rendement volumétrique est de 90 %.
 - Le rendement en couple est de 85 %. La pression d'utilisation est de 110 bars. Calculer :
- 1- Le moment du couple théorique ?
- 2- Le volume par tour de ce moteur (cylindrée) ?
- 3- Le débit utilisé dans le moteur (débit venant de la pompe) ?
- 4- La puissance disponible sur l'arbre?
- 5- La puissance qu'il a reçue?
- 6- Son rendement global?
- 7- La vitesse de l'huile dans la tuyauterie alimentant le moteur ?

(Dimensions de cette tuyauterie : \mathcal{O}_{int} = 8 mm ; \mathcal{O}_{ext} = 13).

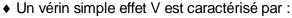
- App18- Quel est le moment du couple utile (sur l'arbre) d'un moteur hydraulique de cylindrée 600 cm³/tr, sachant que la pression amont de 80 bars et une pression aval de 5 bars et le rendement en couple (ou rendement mécanique $\eta_m = 0.9$.
- App19- L'arbre d'un moteur hydraulique de cylindrée 400 cm³/tr, tourne à 60 tr/min. Ce moteur est soumis à une pression amont de 150 bars et une pression aval de 20 bars. Connaissant les rendements volumétriques 90%, mécanique 85%, calculer :
- 1- Le débit fourni par la pompe (donc admis dans le moteur) ?
- 2- Le moment du couple sur l'arbre ?
- 3- La puissance sur l'arbre ?
- 4- La puissance hydraulique fournie par la pompe?
- 5- Le rendement du moteur?
- App20- Un moteur hydraulique reçoit un débit de 90 ℓ /min, sous une pression maxi possible de 130 bas, sa cylindrée est de 150 cm³/ tr. Calculer : $q_v = 90 \frac{\ell / min}{bars}$
- 1- La fréquence de rotation en tr/min ?
- 2- La puissance qu'il reçoit en KW?
- 3- Son rendement sachant que la puissance mécanique (puissance utile) est de 17,5 KW?

 $Cv = 150 \text{ cm}^3/\text{tr}$

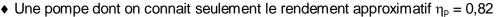
App21- Un oléoduc est une conduite horizontale de diamètre intérieur d=105,6 mm et de longueur L=4 km. On souhaite que le fluide transporté (masse volumique = 0,8.10³ kg/m³ et viscosité = 2 St), ait un débit volumique de 1200 ℓ/min.

Quelle est la puissance nette de la pompe assurant cette fonction si on considère les pertes de charges ?

Exercíces - Applications


@.EZZ@HR@OU

Doc: Prof-Élève


App22-

Alimentation d'un vérin simple effet

Le dispositif d'alimentation du vérin V comprend essentiellement une pompe et une soupape de sûreté.

- Son diamètre intérieur d_v= 100 mm
- Son rendement η_{ν} = 0,9, les pertes étant dues aux frottements des joints d'étanchéité.
- On souhaite que ce vérin développe une force de 75.10 3 N, sa tige se déplaçant à la vitesse uniforme de $V_V = 0.2$ m/s.

- ◆ La tuyauterie de refoulement de la pompe a une longueur L_t = 8 m et un diamètre intérieur de d_t = 21,6 mm
- ◆ L'huile utilisée a une viscosité de 0,25 St et sa masse volumique est de 850 kg /m³.
- ♦ Les pertes de charges singulières sont négligées, ainsi que la différence de niveau entre 3 et 4.

QUESTIONS: (Rep)

- **1- Calculer** de la pression P_{ν} dans le vérin. (10,61 Mpa)
- **2- Calculer** du débit volumique q_t dans la tuyauterie 3-4. $(1,57.10^3 \text{ m}^3/\text{s})$
- **3- Calculer** de la vitesse V_t de l'huile dans la tuyauterie 3-4. (4,28 m/s)
- **4- Calculer** du nombre de Reynolds de l'écoulement 3-4. (≈ 3698)
- **5- Calculer** du coefficient de pertes de charges λ dans la tuyauterie 3-4. (≈0,0405)
- **6- Calculer** de la perte de charge J_{34} dans la conduite. (137 J/kg)
- **7- Calculer** de la pression P_0 de réglage du limiteur de pression. (> à P_3 = 107,26 bar)
- **8- Calculer** de la puissance nette de la pompe : P_n (\approx 16,8 kW)
- **9- Calculer** de la puissance utile du moteur : P_u (\approx 20,5 kW)

App23-

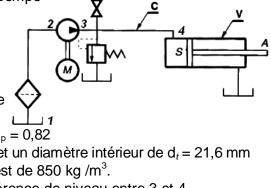
Le dispositif d'alimentation du vérin comprend :

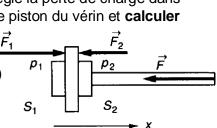
- Un vérin simple effet est caractérisé par :
 - Diamètre intérieur d₁ = 100 mm
 - Diamètre de la tige d₂ = 40 mm
 - Avance rapide $V_1 = 0.1$ m/s

$$(E_1 = 1 ; E_2 = 0 ; E_3 = 1) \Rightarrow (P \rightarrow O_1 ; O_2 \rightarrow R)$$

- Avance lente de travail $V_2 = 0.02$ m/s, pendant cette phase le vérin doit développer une force \vec{F} de 10^5 N

$$(E_1 = 1 ; E_2 = 0 ; E_3 = 0) \Rightarrow (P \rightarrow O_1 ; O_2 \rightarrow R)$$


- Retour rapide $V_3 = ?$


$$(E_1 = 0; E_2 = 1; E_3 = 0) \Rightarrow (P \rightarrow O_2; O_1 \rightarrow R)$$

- Une pompe à cylindrée fixe à un sens de flux, entrainée par un moteur électrique.
- Un limiteur de pression, taré à $P_0 = ?$
- 1- Calculer le débit de la pompe. Le calcul se fera lors de d'avance rapide. (≈1,57.10³ m³/s)
- 2- Calculer la vitesse V₃ de retour rapide du vérin. (≈ 0,12 m/s)
- **3-** Dans le but de réaliser la vitesse réduite de sortie ($V_2 = 0.02 \, mls$), on règle la perte de charge dans l'étrangleur à $P_2 = \Delta p = 4$ bars. **Analyser** les forces qui s'exercent sur le piston du vérin et **calculer** la pression P_1 nécessaire sur la surface S_1 .

On donne le rendement global du vérin : η_{ν} = 0,85.

$$(\vec{F} = -10^5 \cdot \vec{x} \ (N) \ ; \ \vec{F}_1 = P_1.S_1.\eta_v \cdot \vec{x}; \ \vec{F}_2 = -P_2.S_2 \cdot \vec{x}); \ (P_1 \approx 153,75.10^5 \ Pa)$$

Exercíces - Applications

4- Dans le but de calculer la pression de tarage P₀ en sortie de pompe, on **calcule** les pertes de charge dans la conduite qui va de la pompe au vérin en O₁.

Dans une telle conduite de refoulement, la vitesse de l'huile ne doit pas dépasser 4,5 m/s. **Choisir** le diamètre de la conduite dans les valeurs normalisées (12,5 ; 16 ; 21,6 ; 27,3) et **en déduire** la nature de l'écoulement. On donne les caractéristiques de l'huile utilisée : ρ = 860 kg/m³ et ν = 0,35.10 $^{-4}$ m²/s. La longueur de la conduite est L_c = 8 m.

 $(V_c \le V_{max} = 4.5 \text{ m/s} \Rightarrow d_c \ge 14.9 \text{ mm}$; on prend $d_c = 16 \text{ mm}$; $V_c = 3.9 \text{ m/s}$; $\Omega = 1783$: écoulement laminaire) Et $(\lambda = 0.036 \text{ ; } J_c = 136.89 \text{ J/kg})$.

5- Avec les résultats acquis dans les questions précédentes, **calculer** la pression relative P₀ de tarage en sortie de pompe.

 $(J_c.\rho = \Delta p_c = 1,18.10^5 \text{ Pa}; P_0 = P_1 - \Delta p_c = 154,93.10^5 \text{ Pa})$

6- Étude de la tuyauterie d'aspiration de la pompe. L'expérience montre qu'une vitesse d'écoulement de 1,5 à 1,7 m/s est optimale pour une conduite d'aspiration.

Calculer le diamètre de conduite si V = 1,6 m/s par exemple. (d = 15 mm)

7- Les caractéristiques de la conduite d'aspiration 1-2 sont les suivantes:

 $L_a = 3 \text{ m}; d_a = 27.3 \text{ mm}; V_a = 1.34 \text{ m/s}.$

La perte de charge singulière dans le filtre est $J_s = 4 J l k g$.

La différence de niveau est z_2 - z_1 = 0,5 m.

On rappelle les caractéristiques de l'huile utilisée : ρ = 860 kg/m³ ; ν = 0,35.10 ⁻⁴ m²/s. J_e

Calculer la dépression P_2 à l'orifice d'aspiration 2 de la pompe.

Notons que si on utilise des pressions relatives, on posera que $P_1 = P_{atmo} = 0$ et alors P_2 sera négative.

(J₁₋₂ = J_s + J_I ; \Re = 1045 : écoulement laminaire ; λ = 0,061 ; J_I = 6 J/kg ; alors J₁₋₂ = 10 J/kg ;

Bernoulli entre 1-2 : $P2 = -0.136.10^5 Pa$)

8- Calcul de la puissance nette de la pompe.

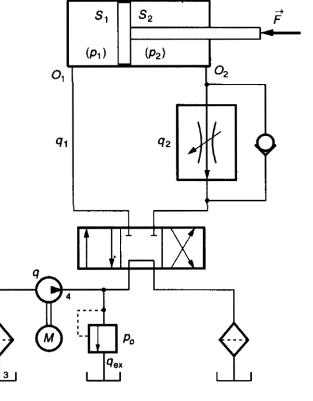
 $P_n = W_{23}.q_m = W_{23}.\rho.q_v = 18045.860.785,5.10^{-6} = 12, 19 \text{ kW}$

9- Calculer la puissance absorbée par la pompe (puissance mécanique sur l'arbre d'entrée). Le rendement de la pompe est donné par le constructeur : $\eta_p = 0.82$. ($P_a = 14, 86 \text{ kW}$)

10- Le rendement du moteur électrique est η_e = 0,92. Quelle est la puissance du moteur ? (P = 16,15 kW)

Exercíces - Applications

Doc: Prof-Élève


App24-

Un vérin à double effet, à simple tige, doit permettre d'exercer une force $\vec{F}=12.10^3$ N à une vitesse que l'on souhaite régler à v=0,5 rn/s. Pour effectuer ce réglage, on choisit de placer en sortie O_2 , un étrangleur de débit réglable $(q_2$ réglable). Soit q_1 le débit que l'on doit assurer à l'orifice O_1 pour réaliser cette fonction. Comme on souhaite pouvoir régler dans une certaine plage, la vitesse de sortie v et la force \vec{F} , on choisit d'alimenter le circuit avec une pompe capable d'avoir un débit $q>q_1$ soit ici $q=2,10^{-3}$ m³ ls; la limitation du débit utile se fait alors par un limiteur de pression en sortie de pompe, taré à $P_0=P_1=130$ bars. Le débit excédentaire $q_{\rm ex}=q-q_1$ est évacué par ce limiteur. Un distributeur 4/3 permet d'assurer le fonctionnement du système en aller et retour P_0 0 no choisit d'alimenter de pour en aller et retour P_0 1 permet d'assurer le fonctionnement du système en aller et retour P_0 1 permet d'assurer le fonctionnement du système en aller et retour P_0 2 permet d'assurer le fonctionnement du système en aller et retour P_0 3 permet d'assurer le fonctionnement du système en aller et retour P_0 3 permet d'assurer le fonctionnement du système en aller et retour P_0 3 permet d'assurer le fonctionnement du système en aller et retour P_0 4 permet d'assurer le fonctionnement du système en aller et retour P_0 4 permet d'assurer le fonctionnement d'assurer le fonctionnement du système en aller et retour P_0 4 permet d'assurer le fonctionnement d'assurer le fonctionnement du système en aller et retour P_0 4 permet d'assurer le fonctionnement d'assurer

v = 0.5 m/s; $II \overrightarrow{F} II = 12.10^3 \text{ N}$; $S_1 = 1.8.10^{-3} \text{ m}^2$; $S_2 = 10^{-3} \text{ m}^2$; $P_0 = P_1 = 130.10^5 \text{ Pa (pressions relatives)}$; $q = 0.5.10^3 \text{ m}^3/\text{s}$

QUESTIONS: (Rep)

- **1- A quelle** valeur doit-on régler le débit q_2 ? ($q_2 = 0.5.10^3 \text{ m}^3/\text{s}$
- **2- Quel doit** être alors le débit q_1 ? $(q_1 = 0.9.10^{-3} \text{ m}^3/\text{s})$
- 3 Quel est le débit excédentaire q_{ex} ? ($q_{ex} = 1,1.10^{-3} \text{ m}^3/\text{s}$)
- **4- Calculer** la pression P_2 . ($P_2 = 114.10^5 Pa$)
- **5- Quelle est** la puissance utile au niveau du vérin ? ($P_u = 6 \text{ kW}$)
- **6-** Étude du circuit d'aspiration de la pompe. Entre les sections repérées 3 et 4 on néglige : la variation d'énergie cinétique du fluide, la variation d'énergie potentielle de pesanteur, les pertes de charge singulières et linéaires.
 - **Calculer** la puissance nette de la pompe. ($P_n = 26 \text{ kW}$)
- 7- En gardant $P_0 = P_1 = 130$ bars et en modifiant le réglage q_2 , à quelle vitesse maximale le vérin pourrait-il déplacer la même charge ? ($v_{max} = 1,11 \text{ m/s}$)
- **8-** On garde $P_0 = P_1 = 130$ bars. Pour déplacer la même charge II \vec{F} II = 12.10³ N et pour la nouvelle vitesse de déplacement v = 1,11 m/s, quelle serait alors, la pression P_2 , le débit q_2 ? ($P_2 = 114.10^5$ Pa)

