

- I) Tâche 1 (analyse fonctionnelle externe):
 - 1. Les trois lieux publiques

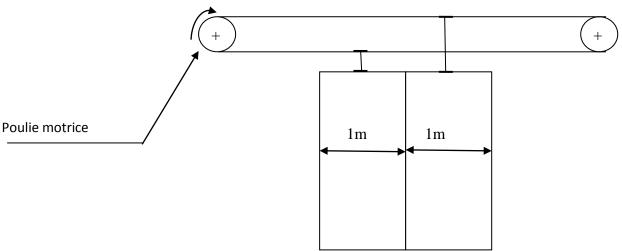
Tenir compte de diverses réponses possibles.

4. Compléter l'actigramme du niveau A-0

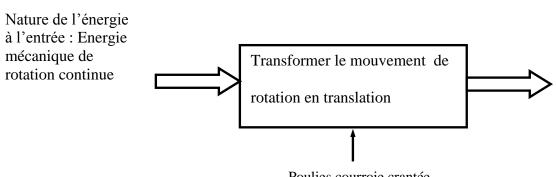
II) Tâche 2:

1. Compléter le tableau par la fonction technique.

Fonction technique réalisée	Composants du constructeur MANTION	Composants du constructeur ROLLON
Fixer le rail au mur (support)		Nb. 6 rainures pour écrous carrés M5 UNI 5596
Guider la porte en translation		


RR44

الامتحان الوطني الموحد للبكالوريا -الدورة الإستدراكية ١٠٥٥ – عناصر الإجابة- مادة: علوم المهندس - العلوم الرياضية (ب)


Document réponse DR 3

2.

a) Indiquer par une flèche le sens de rotation de la poulie motrice pour l'ouverture de la porte.

b) Compléter Le SADT.

Nature de l'énergie à la sortie : Energie mécanique de translation continue

Poulies courroie crantée

- III) **Tâche 3** (étude cinématique) :
 - 1. Calculer N₀

$$\begin{split} N_0 &= L/\pi D_P \\ N_0 &= 1000/3,\!14x\;64,\!68 \\ N_0 &=\!4,\!92\;tr. \end{split}$$

2.

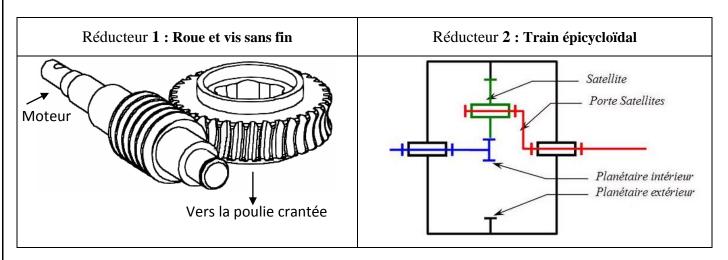
a) Exprimer la vitesse de rotation de la poulie motrice N_p en fonction N_m et du rapport de transmission r du réducteur.

$$N_p = r.N_m$$

b) Montrer que
$$V_T=rac{\pi.N_m.r.D_p}{60000}$$

Avec : V_T en m/s $N_{m}\ en\ tr/min$

D_p : diamètre de poulie en mm r : rapport de transmission du réducteur


$$V_{T} = R_{P} . \omega_{P}$$

$$V_{T} = \frac{N_{P} . 2\pi D_{P} . 10^{-3}}{60 . 2}$$

$$V_{T} = \frac{N_{m} . \pi D_{P} . r}{60000}$$

3)

a) Donner le nom de chacun de ces deux réducteurs.

b) Lorsqu'une coupure de courant survient, la porte étant fermée, peut-on l'ouvrir dans le cas où elle est équipée d'un réducteur irréversible ?

Non

c.1) Donner le nom de ce sous système.

Embrayage progressif à friction plane à commande électromagnétique

c.2) Expliquer son fonctionnement en complétant le texte ci-dessous par le mot qui convient parmi ceux proposés dans la liste suivante :

Lorsque les bobines sont alimentées, le disque D est attiré, il entre alors en contact avec le disque moteur C solidaire de l'arbre ; ce qui permet **d'entraîner** la poulie motrice en rotation.

Lorsque les bobines ne sont pas alimentées le disque D est ramené en position initiale sous l'action des ressorts.

D et C sont alors **séparés**, la poulie motrice peut tourner **librement** autour de l'arbre.

1) Que représente le bloc C ? Donner son symbole.

Nom	
Convertisseur numérique analogique (CNA)	

2)

a. Compléter le tableau suivant :

RA_2	RA_1	RA_0	$V_{s}(V)$
0	0	0	0
0	0	1	1,42
0	1	0	2,85 4,28
0	1	1	4,28
1	0	0	5,71
1	0	1	7,14
1	1	0	8,57
1	1	1	10

b. En déduire les combinaisons qui permettent de sélectionner respectivement Ω_1 et Ω_2 .

RA_2	RA_1	RA_0	$V_{\rm s}$
0	1	1	4,28
1	1	1	10,00

c. Donner le signe de la tension V_{AB} aux bornes du moteur pour chacun des états suivants des sorties RA_4 et RA_3 .

$$RA_4 = 0$$
 et $RA_3 = 1$ **Positif** ($V_{AB} > 0$).

$$RA_4 = 1$$
 et $RA_3 = 0$ **Négatif** ($V_{AB} < 0$).